Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Food Chem ; 442: 138430, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38241986

RESUMO

The tyrosinase pathway takes part in the enzymatic process of food browning and is primarily responsible for food spoilage - manifesting itself from a decrease in its nutritional value to a deterioration of taste, which consequently leads to a gradual loss of shelf life. Finding safe and bio-based tyrosinase inhibitors and anti-browning agents may be of great importance in agriculture and food industries. Herein, we showed that Cyrene™ exhibits tyrosinase inhibitory activity (IC50: 268.2 µM), the 1.44 times higher than ascorbic acid (IC50: 386.5 µM). Binding mode studies demonstrated that the carbonyl oxygen of Cyrene™ coordinates with both copper ions. Surprisingly, both hydroxyl groups of Cyrene gem-diol perform a monodentate binding mode with both copper ions, at similar distances. This fact suggests that both compounds could have a similar binding mode and, as consequence, similar biological activities in tyrosinase inhibition assays and anti-browning activities.


Assuntos
Cobre , Monofenol Mono-Oxigenase , Reação de Maillard , Íons , Inibidores Enzimáticos/farmacologia , Simulação de Acoplamento Molecular
2.
Curr Top Med Chem ; 23(30): 2863-2876, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37679877

RESUMO

Cancer is responsible for high mortality rates worldwide, representing a serious health problem. In this sense, melanoma corresponds to the most aggressive type of skin cancer, being the cause of the highest death rates. Therapeutic strategies for the treatment of melanoma remain limited, with problems associated with toxicity, serious side effects, and mechanisms of resistance. The potential of natural products for the prevention and treatment of melanoma has been reported in different studies. Among these compounds, naphthoquinones (1,2-naphthoquinones and 1,4-naphthoquinones) stand out for their diverse pharmacological properties, including their antitumor activity. Thus, this review covers different studies found in the literature on the application of natural naphthoquinones targeting melanoma, providing information regarding the mechanisms of action investigated for these compounds. Finally, we believe that this review provides a comprehensive basis for the use of natural naphthoquinones against melanoma and that it may contribute to the discovery of promising compounds, specifically naphthoquinones, aimed at the treatment of this cancer.


Assuntos
Antineoplásicos , Melanoma , Naftoquinonas , Humanos , Melanoma/tratamento farmacológico , Antineoplásicos/farmacologia , Naftoquinonas/farmacologia
3.
Int J Mol Sci ; 24(6)2023 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-36982292

RESUMO

Cancer represents the main cause of morbidity and mortality worldwide, constituting a serious health problem. In this context, melanoma represents the most aggressive and fatal type of skin cancer, with death rates increasing every year. Scientific efforts have been addressed to the development of inhibitors targeting the tyrosinase enzyme as potential anti-melanoma agents due to the importance of this enzyme in melanogenesis biosynthesis. Coumarin-based compounds have shown potential activity as anti-melanoma agents and tyrosinase inhibitors. In this study, coumarin-based derivatives were designed, synthesized, and experimentally evaluated upon tyrosinase. Compound FN-19, a coumarin-thiosemicarbazone analog, exhibited potent anti-tyrosinase activity, with an IC50 value of 42.16 ± 5.16 µM, being more active than ascorbic acid and kojic acid, both reference inhibitors. The kinetic study showed that FN-19 acts as a mixed inhibitor. Still, for this compound, molecular dynamics (MD) simulations were performed to determine the stability of the complex with tyrosinase, generating RMSD, RMSF, and interaction plots. Additionally, docking studies were performed to elucidate the binding pose at the tyrosinase, suggesting that the hydroxyl group of coumarin derivative performs coordinate bonds (bidentate) with the copper(II) ions at distances ranging from 2.09 to 2.61 Å. Then, MM/PBSA calculations revealed that van der Waals interactions are the most relevant intermolecular forces for complex stabilization. Furthermore, it was observed that FN-19 has a binding energy (ΔEMM) value similar to tropolone, a tyrosinase inhibitor. Therefore, the data obtained in this study will be useful for designing and developing novel coumarin-based analogs targeting the tyrosinase enzyme.


Assuntos
Cumarínicos , Inibidores Enzimáticos , Melanoma , Monofenol Mono-Oxigenase , Tirosina 3-Mono-Oxigenase , Humanos , Cumarínicos/química , Cumarínicos/farmacologia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Cinética , Melanoma/tratamento farmacológico , Simulação de Acoplamento Molecular , Estrutura Molecular , Monofenol Mono-Oxigenase/antagonistas & inibidores , Relação Estrutura-Atividade , Tirosina 3-Mono-Oxigenase/antagonistas & inibidores
4.
Curr Drug Targets ; 23(14): 1319-1329, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35579157

RESUMO

Neglected tropical diseases (NTDs) are a global public health problem associated with approximately 20 conditions. Among these, Chagas disease (CD), caused by Trypanosoma cruzi, and human African trypanosomiasis (HAT), caused by T. brucei gambiense or T. brucei rhodesiense, affect mainly the populations of the countries from the American continent and sub- Saharan Africa. Pharmacological therapies used for such illnesses are not yet fully effective. In this context, the search for new therapeutic alternatives against these diseases becomes necessary. A drug design tool, recently recognized for its effectiveness in obtaining ligands capable of modulating multiple targets for complex diseases, concerns molecular hybridization. Therefore, this review aims to demonstrate the importance of applying molecular hybridization in facing the challenges of developing prototypes as candidates for the treatment of parasitic diseases. Therefore, studies involving different chemical classes that investigated and used hybrid compounds in recent years were compiled in this work, such as thiazolidinones, naphthoquinones, quinolines, and others. Finally, this review covers several applications of the exploration of molecular hybridization as a potent strategy in the development of molecules potentially active against trypanosomiases, in order to provide information that can help in designing new drugs with trypanocidal activity.


Assuntos
Doença de Chagas , Trypanosoma cruzi , Tripanossomíase Africana , Animais , Humanos , Tripanossomíase Africana/tratamento farmacológico , Doença de Chagas/tratamento farmacológico , Doenças Negligenciadas/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA